Genetic ablation of ryanodine receptor 2 phosphorylation at Ser-2808 aggravates Ca(2+)-dependent cardiomyopathy by exacerbating diastolic Ca2+ release.
نویسندگان
چکیده
Phosphorylation of the cardiac ryanodine receptor (RyR2) by protein kinase A (PKA) at Ser-2808 is suggested to mediate the physiological 'fight or flight' response and contribute to heart failure by rendering the sarcoplasmic reticulum (SR) leaky for Ca(2+). In the present study, we examined the potential role of RyR2 phosphorylation at Ser-2808 in the progression of Ca(2+)-dependent cardiomyopathy (CCM) by using mice genetically modified to feature elevated SR Ca(2+) leak while expressing RyR2s that cannot be phosphorylated at this site (S2808A). Surprisingly, rather than alleviating the disease phenotype, constitutive dephosphorylation of Ser-2808 aggravated CCM as manifested by shortened survival, deteriorated in vivo cardiac function, exacerbated SR Ca(2+) leak and mitochondrial injury. Notably, the deteriorations of cardiac function, myocyte Ca(2+) handling, and mitochondria integrity were consistently worse in mice with heterozygous ablation of Ser-2808 than in mice with complete ablation. Wild-type (WT) and CCM myocytes expressing unmutated RyR2s exhibited a high level of baseline phosphorylation at Ser-2808. Exposure of these CCM cells to protein phosphatase 1 caused a transitory increase in Ca(2+) leak attributable to partial dephosphorylation of RyR2 tetramers at Ser-2808 from more fully phosphorylated state. Thus, exacerbated Ca(2+) leak through partially dephosphorylated RyR2s accounts for the prevalence of the disease phenotype in the heterozygous S2808A CCM mice. These results do not support the importance of RyR2 hyperphosphorylation in Ca(2+)-dependent heart disease, and rather suggest roles for the opposite process, the RyR2 dephosphorylation at this residue in physiological and pathophysiological Ca(2+) signalling.
منابع مشابه
Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.
Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac ...
متن کاملCardiac ryanodine receptor phosphorylation: target sites and functional consequences.
A study by Xiao and co-workers in this issue of the Biochemical Journal demonstrates PKA (protein kinase A)-dependent phosphorylation of Ser-2030 on the cardiac ryanodine receptor (RyR2) that is activated by beta-adrenergic agonists. They show that RyR2 phosphorylation at this site is not appreciably altered in heart failure samples, but retains PKA-dependence of phosphorylation. They contrast ...
متن کاملExercise training during diabetes attenuates cardiac ryanodine receptor dysregulation.
The present study was undertaken to assess the effects of exercise training (ExT) initiated after the onset of diabetes on cardiac ryanodine receptor expression and function. Type 1 diabetes was induced in male Sprague-Dawley rats using streptozotocin (STZ). Three weeks after STZ injection, diabetic rats were divided into two groups. One group underwent ExT for 4 wk while the other group remain...
متن کاملSer-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts.
We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and nat...
متن کاملRyanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.
Defective regulation of the cardiac ryanodine receptor (RyR2)/calcium release channel, required for excitation-contraction coupling in the heart, has been linked to cardiac arrhythmias and heart failure. For example, diastolic calcium "leak" via RyR2 channels in the sarcoplasmic reticulum has been identified as an important factor contributing to impaired contractility in heart failure and vent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 592 9 شماره
صفحات -
تاریخ انتشار 2014